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Abstract
For the vast majority of naturally occurring, small, single-domain proteins,
folding is often described as a two-state process that lacks detectable
intermediates. This observation has often been rationalized on the basis of
a nucleation mechanism for protein folding whose basic premise is the idea
that, after completion of a specific set of contacts forming the so-called folding
nucleus, the native state is achieved promptly. Here we propose a methodology
to identify folding nuclei in small lattice polymers and apply it to the study of
protein molecules with a chain length of N = 48. To investigate the extent to
which protein topology is a robust determinant of the nucleation mechanism,
we compare the nucleation scenario of a native-centric model with that of a
sequence-specific model sharing the same native fold. To evaluate the impact
of the sequence’s finer details in the nucleation mechanism, we consider the
folding of two non-homologous sequences. We conclude that, in a sequence-
specific model, the folding nucleus is, to some extent, formed by the most
stable contacts in the protein and that the less stable linkages in the folding
nucleus are solely determined by the fold’s topology. We have also found
that, independently of the protein sequence, the folding nucleus performs the
same ‘topological’ function. This unifying feature of the nucleation mechanism
results from the residues forming the folding nucleus being distributed along
the protein chain in a similar and well-defined manner that is determined by the
fold’s topological features.
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1. Introduction

Proteins do not appear to fold by means of a unique mechanism and over the years several
phenomenological models have been proposed for protein folding [1–11]. The framework
model, for example, is based on the idea that the formation of the hydrogen-bonded secondary
structural elements precedes the formation of tertiary structure [1, 2], and the diffusion–
collision model assumes that part of the protein folding process involves the interaction of
metastable regions of structure which, when in contact, may provide additional stabilization [3].

Chymotrypsin inhibitor 2, a small, single-domain, two-state folder with 64 residues,
epitomizes the so-called nucleation–condensation (NC) mechanism for protein folding.
The latter was first investigated by Shakhnovich, in the context of Monte Carlo
lattice simulations [4, 5], and by Fersht through extensive protein engineering studies [6] termed
φ-value analysis. The NC mechanism can be viewed as a modified version of the nucleation-
growth mechanism originally proposed by Wetlaufer [7]. The basic premise of the NC model
is the idea that, once a specific set of contacts named the folding nucleus (FN) forms, there is
a concerted consolidation of secondary and tertiary interactions as the whole protein rapidly
collapses to the native fold.

More recently, the topomer search model, which emphasizes the native state’s topology as a
major determinant of protein folding rates, has been proposed [9] and investigated in the context
of off-lattice Langevin simulations [12, 13]. While it seems well established that the native
topology, as measured by the contact order parameter [14], and other related quantities [15–17],
is a major determinant of two-state protein folding kinetics, the question of understanding the
relative roles played by native structure [18] and protein sequence [19] in determining the
folding mechanism remains to be elucidated (reviewed in [20]).

In their seminal work [4], Abkevich and coworkers have found that native structure is
a more robust determinant of the folding mechanism than the sequence for 36-mer lattice
proteins. Indeed, the results of Monte Carlo simulations (MCS) reported by Abkevich and
coworkers [4] suggest that three non-homologous sequences sharing the same native fold also
share a common FN. Here we use this result as the starting point of a study that is based on a
novel methodology and on rather extensive statistics. A nucleation pattern driven exclusively
by native structure (and therefore by native topology) is compared with patterns driven by the
combined effects of protein structure and sequence. If the FN is determined by native structure
alone, the nucleation patterns of different sequences, with the same native fold, should be
similar and, in addition, they should be similar to the nucleation pattern of a model whose
folding dynamics is driven strictly by the structural features of the native fold.

This paper is organized as follows. The next section describes the models used and
computational methodologies adopted. We then propose a new strategy to identify folding
nuclei and present and discuss the simulation results obtained based on it for three different
model proteins. Finally, we draw some conclusions and compare our results with those obtained
using other strategies and simulation efforts.

2. Models and methods

2.1. Lattice model and simulation details

We consider a simple three-dimensional lattice model of a protein molecule with a chain length
of N = 48. In such a minimalist model, amino acid residues, represented by beads of uniform
size, occupy the lattice vertices. The peptide bond that covalently connects amino acids along
the polypeptide chain is represented by sticks with uniform (unit) length corresponding to the
lattice spacing (figure 1, top).
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Figure 1. The native conformation used in this study (top) and the corresponding contact map
(bottom). Each square in the contact map represents a non-covalent native contact, i.e. a contact
that is not a covalent linkage.

In order to mimic the protein’s relaxation towards the native state, we use a standard
Monte Carlo (MC) algorithm [21] together with the kink-jump move set [22]. Local random
displacements of one or two beads (at the same time) are repeatedly accepted or rejected
in accordance with the standard Metropolis MC rule [21]. An MC simulation starts from
a randomly generated unfolded conformation and the folding dynamics is monitored by
following the evolution of the fraction of native contacts, Q = q/L, where L = 57 is the
number of contacts in the native fold and q is the number of native contacts formed at each MC
step. The number of MC steps required to fold to the native state (i.e. to Q = 1.0) is the first
passage time (FPT). The native conformation used in this study, together with its contact map
representation, is shown in figure 1.

Unless otherwise specified, folding is studied at the so-called optimal folding temperature,
Topt, the temperature that minimizes the folding time t [23–27], which is computed as the mean
first passage time (MFPT) of 100 simulations. This optimal folding temperature may differ
from the folding transition temperature, Tf, at which the probability for finding the protein in
an unfolded state is the same as the probability for finding it in the native state. In the context
of a lattice model, Tf may be defined as the temperature at which the average value of the
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Table 1. Kinetic and thermodynamic properties of the three model proteins. The folding time, t , is
measured at the optimal folding temperature, Topt. Also shown is the folding transition temperature,
Tf, and the native state’s energy Enat.

Sequence Enat Topt Tf log10(t)

Gō −57.00 0.65 0.770 5.95 ± 0.03
1:EPEWQLEFDNSNYAWPANYAQHLPGMYRFTVFDMQRNHTSCKLCFLFS −24.34 0.29 0.305 6.84 ± 0.04
2:CIFDLEFECPAFPAPIGWLGLVSVVYLFPVRYCRLCMFNCRFKTKTRC −26.84 0.32 0.332 6.53 ± 0.04

fraction of native contacts, 〈Q〉, is equal to 0.5 [28]. In order to determine Tf, we averaged Q,
after collapse to the native state, over MC simulations lasting at least 20 times longer than the
folding time computed at Topt.

Protein energetics is modelled using the Gō and the Shakhnovich models.

2.2. The Gō model

In the Gō model [29] the energy of a conformation, defined by the set of bead coordinates, {�ri },
is given by the contact Hamiltonian

H ({�ri}) =
N∑

i> j

εi j�(�ri − �r j ), (1)

where the contact function �(�ri − �r j ) is unity if any beads i and j are in contact but not
covalently linked, and is zero otherwise. The Gō potential is based on the idea that the native
fold is very well optimized energetically. Accordingly, it ascribes equal stabilizing energies,
εi j = −1.0, to all pairs of beads i and j that form a contact in the native structure, and neutral
energies, εi j = 0, to all non-native contacts.

2.3. The Shakhnovich model

By contrast with the Gō model, which ignores the protein’s chemical composition, the
Shakhnovich model (see e.g. [30]) addresses the dependence of protein folding dynamics on
the amino acid sequence by considering interactions between the 20 different amino acids used
by nature in the synthesis of real proteins. Accordingly, the contact Hamiltonian that defines
the energy of each conformation is given by

H ({σi}, {�ri }) =
N∑

i> j

ε(σi , σ j )�(�ri − �r j ), (2)

where {σi} represents an amino acid sequence, and σi stands for the chemical identity of bead i .
In this case, both the native and the non-native contacts contribute energetically to the folding
process. The interaction parameters ε are taken from the 20 × 20 Miyazawa–Jernigan matrix,
derived from the distribution of contacts of native proteins [31].

Two non-homologous sequences, numbered 1 and 2, were studied within the context of the
Shakhnovich model. The latter were designed to fold into the native conformation shown in
figure 1 with the method developed by Shakhnovich and Gutin based on random heteropolymer
theory and simulated annealing techniques [32].

Table 1 summarizes some kinetic and thermodynamic properties of the model proteins
discussed above.
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3. A general strategy to identify the folding nucleus

We define the FN as a specific set of native contacts which, once formed, prompts rapid and
highly probable folding to the native state. In what follows, we render a methodology to
investigate the existence of folding nuclei in the folding of 48-mer lattice polymers whose
energetics are modelled by the Gō or by the MJ potential.

The vast majority of small (i.e. with less than 100 amino acids) single-domain proteins fold
in a two-state manner with a relaxation rate following single-exponential kinetics [33]. Two-
state folding is often rationalized through a ‘classical’ mass-action scheme [34]. Accordingly,
the ensemble of conformations that make up the unfolded state (U ) is separated from the native
fold (N) by a free energy barrier along some appropriately defined reaction coordinate. The
ensemble of conformations that lie on the top of the reaction barrier is the so-called transition
state (TS). By definition, TS’s conformations have folding probability Pfold = 1/2 (in other
words, TS’s conformations have a probability of 0.5 of folding before they unfold) [35].
If folding occurs via nucleation, conformations that rapidly reach the native state with high
probability Pfold � 1/2 are post-transition state conformations in which the FN is formed. The
latter is indeed a post-critical FN, since its formation inevitably leads to the formation native
state [4]. In the present study we are therefore interested in post-critical folding nuclei. An
appropriate structural analysis of a significantly large ensemble of such conformations should
therefore reveal, with a high degree of statistical confidence, a set of common contacts which
is the FN. To build such an ensemble we consider 1000 different folding events and, for each
individual event, we identify the earliest formed conformation (EFC) that folds rapidly and
with high probability Pfold � P∗

fold. In order to determine the EFC for a given folding event,
conformations are sampled at times

ts(n) = FPT − n�t, (3)

where �t is an appropriate sampling interval and n = 1, 2, . . .. More precisely, starting with
n = 1, the folding probability, Pfold, of the conformation collected at time ts(1) is computed;
this amounts to determining the fraction of folding simulations (in a set of 100 MC runs) which,
starting from that conformation, reach the native state without passing through conformations
with Q < QU , i.e. the protein folds before it unfolds (we consider a protein to be unfolded if its
fraction of native contacts is smaller than some cut-off QU ). If Pfold < P∗

fold, the conformation
is discarded. Otherwise, if the folding time t is smaller than some cut-off time tmax, the
procedure described above is repeated for n = 2 etc. The EFC for a given folding event is
the conformation corresponding to the largest n which has Pfold � P∗

fold and t < tmax. In the
following section, we discuss in some detail the procedure used to fix the parameters QU , �t
and tmax.

3.1. Nucleation in the Gō model

3.1.1. Determination of QU , tmax and �t . While it is trivial to identify the native state (since
it is the unique conformation with Q = 1.0), it is not straightforward to decide whether a
conformation belongs to the ensemble of unfolded conformations or is kinetically close (i.e.
rapidly converts) to the native state.

The fraction of native contacts Q has been used extensively in simulation studies as a
reaction coordinate, i.e. as a parameter that quantifies the degree of folding [28, 36–38].
In general, however, Q measures closeness to the native structure in energetic (or
thermodynamic) terms only. It has been argued that, unless the energy landscape is
considerably smooth, thermodynamic closeness does not necessarily imply kinetic proximity
to the native structure [39]. However, even if the suitability of Q as a reaction coordinate is
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Figure 2. Probability of finding a conformation with fraction of native contacts Q a function of Q.
QU is the fraction of native contacts below which the protein is considered to be unfolded. The
probability of Q = 1.0 vanishes, since the simulation stops when the protein reaches the native
state.

questionable, very small Qs must necessarily identify unfolded conformations (i.e. that are
thermodynamically and kinetically distant from the native fold).

In order to distinguish unfolded conformations from other conformers we have computed
the probability of finding a conformation with a fraction of native contacts Q as a function of
Q in a sample of 200 different folding events. Two peaks are apparent in the graph reported
in figure 2: a high-probability peak centred at Q = 0.088 and another one, of considerably
lower probability, that appears immediately prior to the native fold. The high-probability peak
is clearly associated with the unfolded states. The cut-off QU is chosen such that more than
half of the unfolded peak lies to the left of Q = QU . In what follows we take QU = 0.15, but
note that other values of QU were tested and were found to lead to the same results.

The probability for the protein to be in high-Q conformations is small but non-negligible
(figure 2). This happens because the optimal folding temperature Topt, at which data was
collected, is well below the system’s folding transition temperature Tf (table 1). Accordingly,
the protein may be trapped in low-energy conformations that share a high degree of structural
similarity with the native fold (i.e. whose fraction of native contacts is Q ∼ 0.8).

By definition, the formation of the FN prompts rapid and highly probable folding (Pfold �
P∗

fold). The cut-off parameter tmax (i.e. the maximum number of MC steps in which the protein
is required to reach the native fold) is therefore a particularly important step of the procedure
proposed to identify the FN.

A tentative sampling interval (about two orders of magnitude smaller than the folding time
for this model protein) was used to collect an ensemble of ∼2000 conformations with P∗

fold = 1
from 100 different folding events. The vast majority (>90%) of such conformations were found
to reach the native state in time t less than 1.4×104 MCS, while about 10% take a considerably
longer time to fold (figure 3).

Two (folding) timescales are clearly distinguished in this ensemble of conformations. The
shorter timescale corresponds to conformations where the FN has the highest probability of
being formed, while the longer one is associated with folding events during which the protein
is trapped in low-energy states which, despite sharing a large similarity with the native fold, do
not have the FN formed (figure 2). In order to eliminate the latter conformations, tmax was set
to 1.4 × 104 MCS.

The efficiency of the sampling procedure may be improved by choosing the sampling
interval, �t , appropriately. Let FPT − FPTEFC be the number of MC steps required to complete
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Figure 3. Fraction of unfolded conformations as a function of time (in a log10-scale). About 90%
of the conformations fold in 1.4 × 104 MCS while the remaining 10% fold in times that are about
one order of magnitude longer.

Figure 4. A typical plot of Pfold as a function of n (with �t = 1000). Conformations collected at
small n have a very high Pfold and some of them have Pfold = 1.

folding once the EFC forms at time FPTEFC in a given folding event. We define tEFC as the
average folding time of the EFC of 100 folding events (i.e. tEFC is the average of FPT − FPTEFC

computed over 100 folding events). Ideally, the sampling interval should be smaller than tEFC,
or at least of the same order of magnitude. In practice, for a tentative �t , we compute tEFC by
averaging N�t in 100 folding events, where N is the maximum value of n for each event. We
fix �t if the corresponding tEFC lies between 5�t or 10�t . For the model protein considered
in this section we have found that tEFC ∼ 6000 for �t = 1000 MCS, which means that, on
average, the EFCs are collected at a sampling time ts(6).

In figure 4, the dependence of Pfold on n is shown for a single folding event. The folding
probability is zero when n = 16, but as time approaches the FPT (i.e. for n < 16) the protein
explores a series of conformations with Pfold �= 0 and reaches the native state with Pfold = 1
when n = 0. The conformations corresponding to n = 1 and n = 2 have Pfold = 1 as well and
reach the native state in time tf < tmax. Thus, the EFC for this folding event is the conformation
which corresponds to n = 2.

3.1.2. A folding nucleus determined solely by native topology. Having fixed the parameters
QU , �t and tmax, we ran 1000 different folding events from which an ensemble of 1000
conformations (one conformation per folding run) were collected. The latter are all EFCs, i.e.
the earliest conformations in folding events that collapse rapidly to the native state (i.e. their
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Figure 5. The contact histogram for the Gō model showing, for each native contact, the probability
of being formed in the ensemble of 1000 EFC conformations that fold in time t < 1300 MCS with
unit folding probability. The nine contacts identified by number have the highest probability (i.e.
probability >85%) of being formed.

Table 2. For structures that, like ours, are maximally compact cuboids with N = 48 residues there
are 57 native contacts. This table displays the correspondence between the contact number and the
pair of residues involved in each contact.

Contact Ri :R j Contact Ri :R j Contact Ri :R j Contact Ri :R j Contact Ri :R j

0 0:41 12 6:35 24 21:26 35 32:35 46 5:44
1 7:44 13 23:26 25 5:42 36 1:20 47 14:33
2 10:47 14 27:34 26 6:41 37 2:21 48 15:34
3 11:32 15 28:33 27 7:40 38 3:22 49 17:36
4 12:33 16 0:35 28 8:39 39 4:23 50 18:37
5 14:25 17 1:34 29 9:38 40 6:27 51 24:29
6 15:26 18 2:27 30 11:36 41 8:35 52 25:28
7 17:34 19 4:29 31 12:17 42 9:36 53 28:31
8 40:43 20 5:30 32 13:16 43 0:39 54 30:45
9 0:37 21 6:31 33 15:20 44 2:41 55 31:46

10 1:18 22 7:46 34 16:19 45 3:42 56 32:47
11 4:27 23 8:47

folding time is t < tmax = 14 000 MCS) with unit folding probability. The average fraction of
native contacts of this ensemble of conformations is 〈Q〉EFC = 0.67.

We start by labelling the 57 native contacts as in table 2. For each native contact
we define the contact probability as the number of conformations in which the contact is
formed normalized to the total number of conformations in the sample. Results reported in
figure 5 show that the contact probability varies considerably among the 57 native contacts, an
observation that is particularly evident for probabilities larger than 50%. This finding strongly
suggests that, while the establishment of some contacts (e.g. 12 and 41, which are present in
over 95% of the conformations analysed) is an essential requirement to ensure rapid folding,
the formation of others (e.g. 2 and 54 which appear with probability <40%) does not appear to
be a requisite to fast folding. The set of nine contacts, involving residues 6, 8, 9, 11, 28, 31–33,
35, and 36 (figure 6, left), and identified by contact number in figure 5, seems to be particularly
relevant. Indeed, each individual contact is formed in more than 85% of the conformations
analysed, and all of the nine contacts are simultaneously formed in 64% of the conformers.
Moreover, on average, 8.2 of them are present in the ensemble of conformations considered.

The fact that rapid folding is associated with the formation of a set of highly probable
contacts suggests that such a contact set is the FN.
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Figure 6. The folding nucleus for the Gō model (left), for sequence 1 (centre) and for sequence 2
(right) is the set of nine, ten and eight contacts, respectively, coloured in red (light grey). Residues
whose number along the sequence is less than 12 are coloured in blue (dark grey) and those whose
number along the sequence is larger than 26 are coloured in red.

(This figure is in colour only in the electronic version)

There is, of course, a certain degree of arbitrariness in the choice of the probability cut-off
that is used to identify the highly probable contacts, and therefore the set of contacts identified
above is a putative FN.

3.2. Nucleation in the Shakhnovich model

In order to investigate the importance of amino acid sequence in the formation of the FN, we
studied the folding of two non-homologous sequences (numbered 1 and 2) (table 1).

3.2.1. Determination of QU , �t and tmax. In the Gō model the so-called topological
frustration [40] results from polymer properties of the chain such as connectivity [9, 35],
excluded volume effects, and quirks of the native topology, such as lack of symmetry [41].
Topological frustration is the only type of frustration in models which, like the Gō model, are
native centric. On the other hand, by taking into account the protein chemistry, the Shakhnovich
model also exhibits energetic frustration. The latter typically leads to longer folding times and,
at temperatures below the folding transition temperature, the chain is prone to get trapped in
low-energy states [41]. This implies that, in contrast with the Gō model, for which Topt is well
below Tf, the two Shakhnovich protein sequences have optimal folding temperatures which are
close to the system’s folding transition temperatures (table 1). Thus, although the observed
folding times are longer than those found for the Gō model (table 1), the Shakhnovich model
proteins do not get trapped in high-Q, low-energy states. Indeed, the Q probability distributions
are not peaked in the high-Q (Q ∼ 0.8) region (figure 7), although both models exhibit
a well-defined, high-probability low-Q peak, at Q = 0.20, corresponding to the unfolded
states. Applying the same criterion for the choice of cut-off QU , one considers a conformation
unfolded if Q < QU = 0.25. As before, we have found that the results for the FN are robust
with respect to small variations in the choice of QU .

In order to fix tmax, a set of ∼ 1200 conformations (per sequence), with P∗
fold = 0.90, is

collected from 100 different folding events and the corresponding folding times are measured.
For sequence 1, two folding timescales are observed (figure 8, left). The fraction of native
contacts in the ensemble of sequence 1’s conformations is Q = 0.72 ± 0.12. Since there is
a small probability for sequence 1 to be in conformations with Q ∼ 0.7 (figure 7), the longer
timescale may be ascribed to the population of these relatively high-Q conformations which,
being local energy minima, will slow down folding. In order to disregard these conformations,
the cut-off time is set to tmax = 30 000 MCS. By contrast, for sequence 2 the folding times are

9
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Figure 7. Probability of having a conformation with fraction of native contacts Q for sequences 1
(left) and 2 (right). The peak at small Q is well defined for both model proteins. The probability
curve for sequence 2 falls sharply to zero as Q increases, while for sequence 1 there is a small
probability for the system to be found in conformations with 0.5 < Q < 0.7. In either case the
protein is considered to be unfolded when the fraction of native contacts is smaller than QU = 0.25.
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Figure 8. Fraction of unfolded conformations as a function of time starting from conformations
with Pfold > 0.90. For sequence 1 (left) two timescales, differing by one order of magnitude, may
be observed. In order to select the fastest folders, the cut-off time is fixed at tmax = 30 000 MCS.
For sequence 2 (right) there is no need to use a cut-off time, since all foldings are of the same order
of magnitude.

all of the same order of magnitude (figure 8, right) and there is no need to use a cut-off time,
tmax.

The reason for taking P∗
fold = 0.9, instead of P∗

fold = 1.0 as in the Go model, is that the
latter leads, in the Shakhnovich model, to an ensemble of conformations with a high average
fraction of native contacts (〈Q〉 ∼ 0.85). The latter are practically folded and thus are not
suitable for distinguishing the contacts that belong to the FN from other trivial contacts.

To improve the efficiency of the sampling procedure we have, also for the Shakhnovich
model proteins, optimized the sampling intervals as described previously. We have found that
�t = 1000 MCS works well for both proteins, yielding tEFC ∼ 9500 MCS and tEFC ∼ 14 000
MCS for sequence 1 and 2 respectively, i.e. on average the EFCs for sequence 1 are collected
at ts(10) while for sequence 2 they are collected at ts(14).

3.2.2. Folding nuclei determined by topology and protein sequence. Two ensembles, each
comprising 1000 EFCs, were obtained for sequences 1 and 2 using the parameters discussed

10
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Figure 9. Contact histograms for sequence 1 (left) and sequence 2 (right). Contacts present with
the highest probability (>95%) are identified by contact number.

Table 3. Mean energy per contact in different contact sets. In the the first column the average
is computed over the protein’s 57 native contacts. SFN stands for the Shakhnovich FN and GōFN

stands for the Gō FN. Accordingly, the second column displays the contact’s mean energy in SFN;
the contact’s mean energy in the set of contacts that are common to the Shakhnovich nuclei and
GōFN is shown in the third column. The fourth column refers to the set of contacts that are in SFN

but not in GōFN and finally, in the fifth column, one considers the contacts that are in GōFN but not
in SFN.

Mean energy per contact

Protein SFN SFN ∧ GōFN SFN ∧ (∼ GōFN) (∼ SFN) ∧ GōFN

Sequence 1 −0.427 −0.691 −0.579 −0.719 −0.424
Sequence 2 −0.471 −0.854 −0.783 −0.896 −0.283

in the previous section, with 〈Q〉EFC = 0.65 and 〈Q〉EFC = 0.62 for sequences 1 and 2,
respectively. These values of 〈Q〉 are similar to that of the Gō model and considerably lower
than those obtained if P∗

fold = 1.0 is used for the Shakhnovich model, allowing the distinction
of the contacts in a putative FN from other spurious contacts.

The native structure of sequences 1 and 2 is the same as that of the Gō model and the same
numbering of native contacts is used (table 2).

From the analysis of the contact histograms we observe that some native contacts are
present with very high probability (>95%) (figure 9). We consider the putative FN as the
set of the most probable contacts.

For sequence 1 the FN is thus formed by ten native linkages (identified by contact number
in figure 9, left) involving 12 residues (namely, 2, 4, 6, 7, 27, 28, 33, 34, 35, 40, 41, and 43)
(figure 6, centre). The ten contacts forming the FN are simultaneously present in 82% of the
EFC conformations analysed and, on average, the latter have 9.7 of these contacts formed. It is
interesting to note that the average stability of the contacts forming the FN is 62% higher than
the average stability of the 57 native contacts of the folded protein (table 3). For sequence 2
the FN is formed by eight native contacts (identified by contact number in figure 9, right) and
ten residues (namely, residues 5, 6, 7, 8, 32, 35, 39, 40, 44, and 46) (figure 6, right). The eight
contacts forming the FN are simultaneously present in 90% of the EFC conformations analysed
and, on average, the latter have 7.9 of these contacts formed. In this case, the average stability
of the FN’s contacts is 53% higher than the average stability of the protein’s native contacts
(table 3).

The two folding nuclei have two native contacts (12 and 27) and four residues in common.
These native contacts are non-local linkages between residues 6 and 35 and between residues
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7 and 40, suggesting that the establishment of the corresponding long-range interactions might
be determinant to ensure rapid folding.

Structurally speaking, the FN of sequence 1 consists of two loops: one formed by residues
2, 27, 41, and 6 and the other by residues 41, 6, 40, and 7 (figure 6, centre). Each of these loops
is formed by contacts located in the interior of the protein, while in sequence 2 a significant
fraction of the FN’s contacts are located on the fold’s surface (figure 6, right).

3.3. Nucleation scenarios and contact stability

The Gō FN shares 22% of its contacts with sequence 1 and 33% with sequence 2. The presence
of these contacts in the folding nuclei of the Shakhnovich models is driven by native topology.
Indeed, the average stability of the Shakhnovich contacts that are also present in the Gō model
is up to 25% lower than the average stability of the remaining contacts in the FN (table 3,
columns 3 and 4) but they are formed with equally high probability >95%.

The extremely high probability (∼1) of the contact between residues 6 and 35 (i.e. contact
12 in the contact histograms) in all the three model proteins is a robust feature of the nucleation
mechanism. Another interesting observation regarding these residues is that they make up a
network of seven native contacts in the fold (whose average range is 25 units of backbone
distance) and about half of these contacts are present in each FN, which suggests that they might
be key residues in the folding process. We have performed exhaustive single-point mutations
in all of the 48 residues and, in agreement with the above hypothesis, we have found that
two mutations, one on residue 6 and the other on residue 35, lead to the largest increases in
folding times (the folding time increases by up to six-fold with respect to that of the wild-type
sequence) [42].

The average stability of the Gō FN’s contacts that do not participate in the Shakhnovich
folding nuclei, of sequences 1 and 2, is up to 66% lower than the protein’s 57 native contacts
(table 3, columns 1 and 5). By contrast, the contacts that are exclusive to the Shakhnovich
folding nuclei are up to 90% more stable than the protein’s 57 native contacts (table 3, columns
1 and 4). Moreover, as we have already pointed out, the Shakhnovich folding nuclei are up to
81% more stable than the protein’s 57 native contacts (table 3, columns 1 and 2).

Clearly, by ascribing different stabilities to the protein’s native contacts, the protein
sequence promotes an overall change of the nucleation scenario, which in the Gō model is
driven solely by the topological features of the native fold. To see how this happens in more
detail, we investigated the effect of contact stability in the contact histogram (i.e. in the
determination of the FN) of sequence 2. The most stable contacts in this case are contacts
1, 16, 23, 25, 28, 35, 41, 43, 46, 56 (figure 10) and, not surprisingly, half of them belong
to the FN (figure 9). It is interesting to note that, by being particularly stable, some contacts
may indirectly promote an increase in the probability of occurrence of other less stable contacts.
This feature is well illustrated by residue 47 and the three contacts it establishes in the fold. The
latter appear with considerably high probabilities in the contact histogram. The probabilities
of contacts 23 and 56 (which are considerably lower in the Gō model) may be ascribed to
their very high stabilities. However, contact 2 is a neutral one and, in spite of its relative low
stability, its probability is higher when compared with other stable contacts in the protein. This
presumably happens because the very high stability of contacts 23 and 56 forces residue 47 to
be in its native environment (i.e. to have all of its native contacts formed simultaneously) which
naturally increases the probability with which contact 2 is formed.

Stability is indeed a considerably determinant factor for the Shakhnovich FN, but it is not
the whole story. The presence of Gō contacts in the nucleus is not energetically favourable
(table 3, columns 2 and 3), but is very relevant from a functional point of view, as discussed in
the next section.
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Figure 10. Energy of each native contact. Half of the most stable contacts, identified in the figure
by contact number, are present in sequence 2’s folding nucleus.

3.4. The ‘topological’ role of the folding nucleus

Despite clear differences, which are driven by contact stability, the three folding nuclei are
nonetheless topologically similar. The residues that participate in the set of native contacts
forming the folding nuclei split into two groups located in different regions of the protein
chain. Indeed, in all cases there is a group of four residues located in one region of the chain
that comprises residues 2 to 11 and there is another group of six (or eight) residues located in
a distant part of the chain that extends between residue 27 and residue 46. This is illustrated in
figure 6, where the residues whose number along the sequence is less than 12 are coloured in
blue while those whose number along the sequence is larger than 26 are coloured in red. It then
follows that more than two thirds of the contacts that make up the folding nuclei are non-local
contacts whose range lies between 18 and 30 units of backbone separation. In the three protein
models the FN performs the same ‘topological’ role, that of linking residues located in two
distant parts of the protein chain.

4. Conclusions

In the present work we have proposed and discussed in detail a methodology for identifying
the folding nucleus (i.e. a specific subset of native contacts which, once formed, prompts very
rapid and highly probable folding) in small lattice proteins, and applied it to investigate the
nucleation mechanism of three model proteins with a chain length of N = 48. We have found
that a folding nucleus (FN) which is solely driven by the native fold’s topological features
(as happens in the Gō model) is not globally robust with regard to protein sequence. The
latter distinguishes native contacts, based on the stability of their interaction energies, and
the nucleation pattern is biased towards the most stable contacts. In other words, in a (more
realistic) lattice model, like a sequence-specific one, the FN is, to some extent, formed by
the most stable contacts, and the presence of other less stable contacts in the FN is uniquely
determined by the fold’s topology. However, we have found that, independently of protein
sequence, the residues forming the three folding nuclei are distributed along the protein chain
in a similar and well-defined manner. Accordingly, the nucleation mechanism comprises the
coalescence of two distinct and distant parts of the protein chain through the establishment of
the long-range interactions corresponding to the non-local contacts forming the FN. Therefore
we conclude that the fold’s topology determines, to a large extent, the overall position of the
FN in the protein chain. However, as shown by Tiana et al [43], sequences as dissimilar as ours
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may have a different set of key residues (e.g. residues 6 and 35 in our models) in the FN, which
may lead to the latter being topologically distinct.

A particularly interesting finding of this work regards the existence of two residues which,
in the three model systems, are involved in about 30% of the contacts forming the FN and
appear to be determinant in ensuring fast folding. We speculate that the network of native
contacts formed by these residues is sufficient to determine the overall fold of the protein in
a way that is similar to that found by Vendruscolo et al [44] for a 98-residue protein model
off-lattice.

Previous simulation efforts on lattice models have focused on smaller chain length (namely
N = 28 [5] and N = 36 [4]) as well as on proteins with the same chain length [45]. We have
found that the size of the FN is similar to the size of the nuclei identified by Shakhnovich and
collaborators (containing between eight and 11 native contacts) which suggests that, at least for
small proteins, the size of the FN does not depend on the size of the chain. This could provide
an explanation for the small correlation between chain length and folding rates found in real
proteins [46–48].

Generalizations of the methodology described here may be useful to investigate the folding
pathways of model proteins. A very preliminary analysis of our data indicates that there is a
higher degree of structural similarity among the EFCs of the Shakhnovich model than among
those of the Gō model. Indeed, we have determined how many different native contacts exist
between each pair of conformations in the three ensembles that were used to identify the FNs
(i.e. in the three ensembles of EFCs) and computed its mean value over the total number of
possible pairs. We have found that, on average, two EFCs in the Gō model differ by 11.3
native contacts. Sequences 1 and 2, on the other hand, differ by 9.7 and 7.2 native contacts,
respectively. We speculate that the higher structural similarity between conformations in the
Shakhnovich model may be related to a smaller number of rapid folding pathways. However, a
definite conclusion requires further quantitative analysis.
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